extension | φ:Q→Aut N | d | ρ | Label | ID |
C42.1C23 = C42.C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.1C2^3 | 128,387 |
C42.2C23 = C42.2C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.2C2^3 | 128,388 |
C42.3C23 = C42.3C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.3C2^3 | 128,389 |
C42.4C23 = C42.4C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.4C2^3 | 128,390 |
C42.5C23 = C42.5C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.5C2^3 | 128,391 |
C42.6C23 = C42.6C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.6C2^3 | 128,392 |
C42.7C23 = C42.7C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.7C2^3 | 128,393 |
C42.8C23 = C42.8C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.8C2^3 | 128,394 |
C42.9C23 = C42.9C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 128 | | C4^2.9C2^3 | 128,395 |
C42.10C23 = C42.10C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.10C2^3 | 128,396 |
C42.11C23 = M4(2).C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | 8- | C4^2.11C2^3 | 128,1752 |
C42.12C23 = C42.12C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 16 | 8+ | C4^2.12C2^3 | 128,1753 |
C42.13C23 = C42.13C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | 8- | C4^2.13C2^3 | 128,1754 |
C42.14C23 = C42.14C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.14C2^3 | 128,1773 |
C42.15C23 = C42.15C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.15C2^3 | 128,1774 |
C42.16C23 = C42.16C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.16C2^3 | 128,1775 |
C42.17C23 = C42.17C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.17C2^3 | 128,1776 |
C42.18C23 = C42.18C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.18C2^3 | 128,1777 |
C42.19C23 = C42.19C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.19C2^3 | 128,1778 |
C42.20C23 = C42.20C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.20C2^3 | 128,1813 |
C42.21C23 = C42.21C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.21C2^3 | 128,1814 |
C42.22C23 = C42.22C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.22C2^3 | 128,1815 |
C42.23C23 = C42.23C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.23C2^3 | 128,1816 |
C42.24C23 = C4.2- 1+4 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.24C2^3 | 128,1989 |
C42.25C23 = C42.25C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.25C2^3 | 128,1990 |
C42.26C23 = C42.26C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.26C2^3 | 128,1991 |
C42.27C23 = C42.27C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.27C2^3 | 128,1992 |
C42.28C23 = C42.28C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.28C2^3 | 128,1993 |
C42.29C23 = C42.29C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.29C2^3 | 128,1994 |
C42.30C23 = C42.30C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.30C2^3 | 128,1995 |
C42.31C23 = D8⋊9D4 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.31C2^3 | 128,1996 |
C42.32C23 = SD16⋊D4 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.32C2^3 | 128,1997 |
C42.33C23 = SD16⋊6D4 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.33C2^3 | 128,1998 |
C42.34C23 = D8⋊10D4 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.34C2^3 | 128,1999 |
C42.35C23 = SD16⋊7D4 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.35C2^3 | 128,2000 |
C42.36C23 = SD16⋊8D4 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.36C2^3 | 128,2001 |
C42.37C23 = Q16⋊9D4 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.37C2^3 | 128,2002 |
C42.38C23 = Q16⋊10D4 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.38C2^3 | 128,2003 |
C42.39C23 = D8⋊11D4 | φ: C23/C1 → C23 ⊆ Aut C42 | 16 | 8+ | C4^2.39C2^3 | 128,2020 |
C42.40C23 = D8.13D4 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | 8- | C4^2.40C2^3 | 128,2021 |
C42.41C23 = C42.41C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.41C2^3 | 128,2038 |
C42.42C23 = C42.42C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.42C2^3 | 128,2039 |
C42.43C23 = C42.43C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.43C2^3 | 128,2040 |
C42.44C23 = C42.44C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.44C2^3 | 128,2041 |
C42.45C23 = C42.45C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.45C2^3 | 128,2042 |
C42.46C23 = C42.46C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.46C2^3 | 128,2043 |
C42.47C23 = C42.47C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.47C2^3 | 128,2044 |
C42.48C23 = C42.48C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.48C2^3 | 128,2045 |
C42.49C23 = C42.49C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.49C2^3 | 128,2046 |
C42.50C23 = C42.50C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.50C2^3 | 128,2047 |
C42.51C23 = C42.51C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.51C2^3 | 128,2048 |
C42.52C23 = C42.52C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.52C2^3 | 128,2049 |
C42.53C23 = C42.53C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.53C2^3 | 128,2050 |
C42.54C23 = C42.54C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.54C2^3 | 128,2051 |
C42.55C23 = C42.55C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.55C2^3 | 128,2052 |
C42.56C23 = C42.56C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.56C2^3 | 128,2053 |
C42.57C23 = C42.57C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.57C2^3 | 128,2075 |
C42.58C23 = C42.58C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.58C2^3 | 128,2076 |
C42.59C23 = C42.59C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.59C2^3 | 128,2077 |
C42.60C23 = C42.60C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.60C2^3 | 128,2078 |
C42.61C23 = C42.61C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.61C2^3 | 128,2079 |
C42.62C23 = C42.62C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.62C2^3 | 128,2080 |
C42.63C23 = C42.63C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.63C2^3 | 128,2081 |
C42.64C23 = C42.64C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.64C2^3 | 128,2082 |
C42.65C23 = D8⋊4Q8 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.65C2^3 | 128,2116 |
C42.66C23 = SD16⋊Q8 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.66C2^3 | 128,2117 |
C42.67C23 = SD16⋊2Q8 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.67C2^3 | 128,2118 |
C42.68C23 = Q16⋊4Q8 | φ: C23/C1 → C23 ⊆ Aut C42 | 128 | | C4^2.68C2^3 | 128,2119 |
C42.69C23 = SD16⋊3Q8 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.69C2^3 | 128,2120 |
C42.70C23 = D8⋊5Q8 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.70C2^3 | 128,2121 |
C42.71C23 = Q16⋊5Q8 | φ: C23/C1 → C23 ⊆ Aut C42 | 128 | | C4^2.71C2^3 | 128,2122 |
C42.72C23 = C42.72C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.72C2^3 | 128,2129 |
C42.73C23 = C42.73C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.73C2^3 | 128,2130 |
C42.74C23 = C42.74C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.74C2^3 | 128,2131 |
C42.75C23 = C42.75C23 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.75C2^3 | 128,2132 |
C42.76C23 = C22.74C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.76C2^3 | 128,2217 |
C42.77C23 = C22.75C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.77C2^3 | 128,2218 |
C42.78C23 = C22.76C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.78C2^3 | 128,2219 |
C42.79C23 = C22.77C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.79C2^3 | 128,2220 |
C42.80C23 = C22.78C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.80C2^3 | 128,2221 |
C42.81C23 = C22.81C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.81C2^3 | 128,2224 |
C42.82C23 = C22.84C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.82C2^3 | 128,2227 |
C42.83C23 = C22.91C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.83C2^3 | 128,2234 |
C42.84C23 = C22.92C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.84C2^3 | 128,2235 |
C42.85C23 = C22.93C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.85C2^3 | 128,2236 |
C42.86C23 = C22.94C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.86C2^3 | 128,2237 |
C42.87C23 = C22.95C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.87C2^3 | 128,2238 |
C42.88C23 = C22.96C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.88C2^3 | 128,2239 |
C42.89C23 = C22.97C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.89C2^3 | 128,2240 |
C42.90C23 = C22.98C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.90C2^3 | 128,2241 |
C42.91C23 = C22.99C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.91C2^3 | 128,2242 |
C42.92C23 = C22.100C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.92C2^3 | 128,2243 |
C42.93C23 = C22.102C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.93C2^3 | 128,2245 |
C42.94C23 = C22.103C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.94C2^3 | 128,2246 |
C42.95C23 = C22.104C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.95C2^3 | 128,2247 |
C42.96C23 = C22.105C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.96C2^3 | 128,2248 |
C42.97C23 = C22.106C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.97C2^3 | 128,2249 |
C42.98C23 = C22.107C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.98C2^3 | 128,2250 |
C42.99C23 = C22.108C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.99C2^3 | 128,2251 |
C42.100C23 = C23.144C24 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.100C2^3 | 128,2252 |
C42.101C23 = C22.110C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.101C2^3 | 128,2253 |
C42.102C23 = C22.111C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.102C2^3 | 128,2254 |
C42.103C23 = C23.146C24 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.103C2^3 | 128,2255 |
C42.104C23 = C22.113C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.104C2^3 | 128,2256 |
C42.105C23 = C22.122C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.105C2^3 | 128,2265 |
C42.106C23 = C22.123C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.106C2^3 | 128,2266 |
C42.107C23 = C22.124C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.107C2^3 | 128,2267 |
C42.108C23 = C22.125C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.108C2^3 | 128,2268 |
C42.109C23 = C22.126C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.109C2^3 | 128,2269 |
C42.110C23 = C22.127C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.110C2^3 | 128,2270 |
C42.111C23 = C22.128C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.111C2^3 | 128,2271 |
C42.112C23 = C22.129C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.112C2^3 | 128,2272 |
C42.113C23 = C22.130C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.113C2^3 | 128,2273 |
C42.114C23 = C22.131C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.114C2^3 | 128,2274 |
C42.115C23 = C22.132C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.115C2^3 | 128,2275 |
C42.116C23 = C22.133C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.116C2^3 | 128,2276 |
C42.117C23 = C22.134C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.117C2^3 | 128,2277 |
C42.118C23 = C22.135C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.118C2^3 | 128,2278 |
C42.119C23 = C22.136C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.119C2^3 | 128,2279 |
C42.120C23 = C22.137C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.120C2^3 | 128,2280 |
C42.121C23 = C22.138C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.121C2^3 | 128,2281 |
C42.122C23 = C22.139C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.122C2^3 | 128,2282 |
C42.123C23 = C22.140C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.123C2^3 | 128,2283 |
C42.124C23 = C22.141C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.124C2^3 | 128,2284 |
C42.125C23 = C22.142C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.125C2^3 | 128,2285 |
C42.126C23 = C22.143C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.126C2^3 | 128,2286 |
C42.127C23 = C22.144C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.127C2^3 | 128,2287 |
C42.128C23 = C22.145C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.128C2^3 | 128,2288 |
C42.129C23 = C22.146C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.129C2^3 | 128,2289 |
C42.130C23 = C22.147C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.130C2^3 | 128,2290 |
C42.131C23 = C22.149C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.131C2^3 | 128,2292 |
C42.132C23 = C22.150C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.132C2^3 | 128,2293 |
C42.133C23 = C22.151C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.133C2^3 | 128,2294 |
C42.134C23 = C22.152C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.134C2^3 | 128,2295 |
C42.135C23 = C22.153C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.135C2^3 | 128,2296 |
C42.136C23 = C22.154C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.136C2^3 | 128,2297 |
C42.137C23 = C22.155C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.137C2^3 | 128,2298 |
C42.138C23 = C22.156C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 64 | | C4^2.138C2^3 | 128,2299 |
C42.139C23 = C22.157C25 | φ: C23/C1 → C23 ⊆ Aut C42 | 32 | | C4^2.139C2^3 | 128,2300 |
C42.140C23 = C2×C42.C22 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.140C2^3 | 128,254 |
C42.141C23 = C2×C42.2C22 | φ: C23/C2 → C22 ⊆ Aut C42 | 128 | | C4^2.141C2^3 | 128,255 |
C42.142C23 = C42.66D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.142C2^3 | 128,256 |
C42.143C23 = C42.405D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.143C2^3 | 128,257 |
C42.144C23 = C42.406D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.144C2^3 | 128,258 |
C42.145C23 = C42.407D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.145C2^3 | 128,259 |
C42.146C23 = C42.408D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.146C2^3 | 128,260 |
C42.147C23 = C42.376D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.147C2^3 | 128,261 |
C42.148C23 = C42.67D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.148C2^3 | 128,262 |
C42.149C23 = C42.68D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.149C2^3 | 128,263 |
C42.150C23 = C42.69D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.150C2^3 | 128,264 |
C42.151C23 = C42.70D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.151C2^3 | 128,265 |
C42.152C23 = C42.71D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.152C2^3 | 128,266 |
C42.153C23 = C42.72D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.153C2^3 | 128,267 |
C42.154C23 = C42.73D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.154C2^3 | 128,268 |
C42.155C23 = C42.74D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.155C2^3 | 128,269 |
C42.156C23 = C2×C4.D8 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.156C2^3 | 128,270 |
C42.157C23 = C2×C4.10D8 | φ: C23/C2 → C22 ⊆ Aut C42 | 128 | | C4^2.157C2^3 | 128,271 |
C42.158C23 = C42.409D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.158C2^3 | 128,272 |
C42.159C23 = C2×C4.6Q16 | φ: C23/C2 → C22 ⊆ Aut C42 | 128 | | C4^2.159C2^3 | 128,273 |
C42.160C23 = C42.410D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.160C2^3 | 128,274 |
C42.161C23 = C42.411D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.161C2^3 | 128,275 |
C42.162C23 = C42.412D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.162C2^3 | 128,276 |
C42.163C23 = C42.413D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.163C2^3 | 128,277 |
C42.164C23 = C42.414D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.164C2^3 | 128,278 |
C42.165C23 = C42.78D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.165C2^3 | 128,279 |
C42.166C23 = C42.415D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.166C2^3 | 128,280 |
C42.167C23 = C42.416D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.167C2^3 | 128,281 |
C42.168C23 = C42.79D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.168C2^3 | 128,282 |
C42.169C23 = C42.80D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.169C2^3 | 128,283 |
C42.170C23 = C42.81D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.170C2^3 | 128,284 |
C42.171C23 = C42.417D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.171C2^3 | 128,285 |
C42.172C23 = C42.418D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.172C2^3 | 128,286 |
C42.173C23 = C42.82D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.173C2^3 | 128,287 |
C42.174C23 = C42.83D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.174C2^3 | 128,288 |
C42.175C23 = C42.84D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.175C2^3 | 128,289 |
C42.176C23 = C42.85D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.176C2^3 | 128,290 |
C42.177C23 = C42.86D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.177C2^3 | 128,291 |
C42.178C23 = C42.87D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.178C2^3 | 128,292 |
C42.179C23 = C42.88D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.179C2^3 | 128,293 |
C42.180C23 = D4⋊D8 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.180C2^3 | 128,351 |
C42.181C23 = C42.181C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.181C2^3 | 128,352 |
C42.182C23 = Q8⋊D8 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.182C2^3 | 128,353 |
C42.183C23 = D4⋊SD16 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.183C2^3 | 128,354 |
C42.184C23 = Q8⋊SD16 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.184C2^3 | 128,355 |
C42.185C23 = C42.185C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.185C2^3 | 128,356 |
C42.186C23 = D4⋊3D8 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.186C2^3 | 128,357 |
C42.187C23 = Q8⋊6SD16 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.187C2^3 | 128,358 |
C42.188C23 = Q8⋊3D8 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.188C2^3 | 128,359 |
C42.189C23 = C42.189C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.189C2^3 | 128,360 |
C42.190C23 = D4⋊2SD16 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.190C2^3 | 128,361 |
C42.191C23 = C42.191C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.191C2^3 | 128,362 |
C42.192C23 = Q8⋊2SD16 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.192C2^3 | 128,363 |
C42.193C23 = D4⋊Q16 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.193C2^3 | 128,364 |
C42.194C23 = Q8⋊Q16 | φ: C23/C2 → C22 ⊆ Aut C42 | 128 | | C4^2.194C2^3 | 128,365 |
C42.195C23 = C42.195C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.195C2^3 | 128,366 |
C42.196C23 = D4.SD16 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.196C2^3 | 128,367 |
C42.197C23 = Q8.Q16 | φ: C23/C2 → C22 ⊆ Aut C42 | 128 | | C4^2.197C2^3 | 128,368 |
C42.198C23 = D4.3Q16 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.198C2^3 | 128,369 |
C42.199C23 = C42.199C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.199C2^3 | 128,370 |
C42.200C23 = D4.D8 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.200C2^3 | 128,371 |
C42.201C23 = C42.201C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.201C2^3 | 128,372 |
C42.202C23 = Q8.D8 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.202C2^3 | 128,373 |
C42.203C23 = Q8⋊3SD16 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.203C2^3 | 128,374 |
C42.204C23 = D4.5SD16 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.204C2^3 | 128,375 |
C42.205C23 = D4⋊3Q16 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.205C2^3 | 128,376 |
C42.206C23 = Q8⋊3Q16 | φ: C23/C2 → C22 ⊆ Aut C42 | 128 | | C4^2.206C2^3 | 128,377 |
C42.207C23 = C42.207C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.207C2^3 | 128,378 |
C42.208C23 = D4.7D8 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.208C2^3 | 128,379 |
C42.209C23 = Q8⋊4Q16 | φ: C23/C2 → C22 ⊆ Aut C42 | 128 | | C4^2.209C2^3 | 128,380 |
C42.210C23 = D4⋊4Q16 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.210C2^3 | 128,381 |
C42.211C23 = C42.211C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.211C2^3 | 128,382 |
C42.212C23 = Q8⋊4SD16 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.212C2^3 | 128,383 |
C42.213C23 = C42.213C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.213C2^3 | 128,384 |
C42.214C23 = Q8.SD16 | φ: C23/C2 → C22 ⊆ Aut C42 | 128 | | C4^2.214C2^3 | 128,385 |
C42.215C23 = D4⋊4SD16 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.215C2^3 | 128,386 |
C42.216C23 = C8⋊8D8 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.216C2^3 | 128,397 |
C42.217C23 = C8⋊14SD16 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.217C2^3 | 128,398 |
C42.218C23 = C8⋊7D8 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.218C2^3 | 128,399 |
C42.219C23 = C8⋊13SD16 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.219C2^3 | 128,400 |
C42.220C23 = C8.28D8 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.220C2^3 | 128,401 |
C42.221C23 = Q8⋊1Q16 | φ: C23/C2 → C22 ⊆ Aut C42 | 128 | | C4^2.221C2^3 | 128,402 |
C42.222C23 = C8⋊11SD16 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.222C2^3 | 128,403 |
C42.223C23 = C8⋊8Q16 | φ: C23/C2 → C22 ⊆ Aut C42 | 128 | | C4^2.223C2^3 | 128,404 |
C42.224C23 = C8⋊10SD16 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.224C2^3 | 128,405 |
C42.225C23 = C8⋊7Q16 | φ: C23/C2 → C22 ⊆ Aut C42 | 128 | | C4^2.225C2^3 | 128,406 |
C42.226C23 = D4.1Q16 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.226C2^3 | 128,407 |
C42.227C23 = Q8.1Q16 | φ: C23/C2 → C22 ⊆ Aut C42 | 128 | | C4^2.227C2^3 | 128,408 |
C42.228C23 = D4.2SD16 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.228C2^3 | 128,409 |
C42.229C23 = Q8.2SD16 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.229C2^3 | 128,410 |
C42.230C23 = D4.3SD16 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.230C2^3 | 128,411 |
C42.231C23 = Q8.3SD16 | φ: C23/C2 → C22 ⊆ Aut C42 | 128 | | C4^2.231C2^3 | 128,412 |
C42.232C23 = D4.2D8 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.232C2^3 | 128,413 |
C42.233C23 = Q8.2D8 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.233C2^3 | 128,414 |
C42.234C23 = D4.Q16 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.234C2^3 | 128,415 |
C42.235C23 = Q8.2Q16 | φ: C23/C2 → C22 ⊆ Aut C42 | 128 | | C4^2.235C2^3 | 128,416 |
C42.236C23 = C8⋊D8 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.236C2^3 | 128,417 |
C42.237C23 = C8⋊SD16 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.237C2^3 | 128,418 |
C42.238C23 = C8⋊2D8 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.238C2^3 | 128,419 |
C42.239C23 = C8⋊2SD16 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.239C2^3 | 128,420 |
C42.240C23 = C8.D8 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.240C2^3 | 128,421 |
C42.241C23 = C8.SD16 | φ: C23/C2 → C22 ⊆ Aut C42 | 128 | | C4^2.241C2^3 | 128,422 |
C42.242C23 = C8⋊3SD16 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.242C2^3 | 128,423 |
C42.243C23 = C8⋊Q16 | φ: C23/C2 → C22 ⊆ Aut C42 | 128 | | C4^2.243C2^3 | 128,424 |
C42.244C23 = C8⋊4SD16 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.244C2^3 | 128,425 |
C42.245C23 = C8⋊2Q16 | φ: C23/C2 → C22 ⊆ Aut C42 | 128 | | C4^2.245C2^3 | 128,426 |
C42.246C23 = C8.8SD16 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.246C2^3 | 128,427 |
C42.247C23 = C8.3Q16 | φ: C23/C2 → C22 ⊆ Aut C42 | 128 | | C4^2.247C2^3 | 128,428 |
C42.248C23 = C42.248C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.248C2^3 | 128,429 |
C42.249C23 = C42.249C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.249C2^3 | 128,430 |
C42.250C23 = C42.250C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.250C2^3 | 128,431 |
C42.251C23 = C42.251C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 128 | | C4^2.251C2^3 | 128,432 |
C42.252C23 = C42.252C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.252C2^3 | 128,433 |
C42.253C23 = C42.253C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.253C2^3 | 128,434 |
C42.254C23 = C42.254C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.254C2^3 | 128,435 |
C42.255C23 = C42.255C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 128 | | C4^2.255C2^3 | 128,436 |
C42.256C23 = C2×C42.6C22 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.256C2^3 | 128,1636 |
C42.257C23 = C42.257C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.257C2^3 | 128,1637 |
C42.258C23 = C2×C42.7C22 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.258C2^3 | 128,1651 |
C42.259C23 = C42.259C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.259C2^3 | 128,1653 |
C42.260C23 = C42.260C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.260C2^3 | 128,1654 |
C42.261C23 = C42.261C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.261C2^3 | 128,1655 |
C42.262C23 = C42.262C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.262C2^3 | 128,1656 |
C42.263C23 = C2×C8⋊9D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.263C2^3 | 128,1659 |
C42.264C23 = C42.264C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.264C2^3 | 128,1661 |
C42.265C23 = C42.265C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.265C2^3 | 128,1662 |
C42.266C23 = C42.266C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.266C2^3 | 128,1664 |
C42.267C23 = M4(2)⋊22D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.267C2^3 | 128,1665 |
C42.268C23 = D4×M4(2) | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.268C2^3 | 128,1666 |
C42.269C23 = C2×SD16⋊C4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.269C2^3 | 128,1672 |
C42.270C23 = C2×Q16⋊C4 | φ: C23/C2 → C22 ⊆ Aut C42 | 128 | | C4^2.270C2^3 | 128,1673 |
C42.271C23 = C2×D8⋊C4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.271C2^3 | 128,1674 |
C42.272C23 = C42.383D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.272C2^3 | 128,1675 |
C42.273C23 = C4×C8⋊C22 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.273C2^3 | 128,1676 |
C42.274C23 = C4×C8.C22 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.274C2^3 | 128,1677 |
C42.275C23 = C42.275C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.275C2^3 | 128,1678 |
C42.276C23 = C42.276C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.276C2^3 | 128,1679 |
C42.277C23 = C42.277C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.277C2^3 | 128,1680 |
C42.278C23 = C42.278C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.278C2^3 | 128,1681 |
C42.279C23 = C42.279C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.279C2^3 | 128,1682 |
C42.280C23 = C42.280C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.280C2^3 | 128,1683 |
C42.281C23 = C42.281C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.281C2^3 | 128,1684 |
C42.282C23 = C2×C8.26D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.282C2^3 | 128,1686 |
C42.283C23 = C42.283C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | 4 | C4^2.283C2^3 | 128,1687 |
C42.284C23 = M4(2).51D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 16 | 4 | C4^2.284C2^3 | 128,1688 |
C42.285C23 = M4(2)○D8 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | 4 | C4^2.285C2^3 | 128,1689 |
C42.286C23 = C42.286C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.286C2^3 | 128,1692 |
C42.287C23 = C42.287C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.287C2^3 | 128,1693 |
C42.288C23 = M4(2)⋊9Q8 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.288C2^3 | 128,1694 |
C42.289C23 = Q8×M4(2) | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.289C2^3 | 128,1695 |
C42.290C23 = C42.290C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.290C2^3 | 128,1697 |
C42.291C23 = C42.291C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.291C2^3 | 128,1698 |
C42.292C23 = C42.292C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.292C2^3 | 128,1699 |
C42.293C23 = C42.293C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.293C2^3 | 128,1700 |
C42.294C23 = C42.294C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.294C2^3 | 128,1701 |
C42.295C23 = D4⋊6M4(2) | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.295C2^3 | 128,1702 |
C42.296C23 = C23⋊3M4(2) | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.296C2^3 | 128,1705 |
C42.297C23 = C42.297C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.297C2^3 | 128,1708 |
C42.298C23 = C42.298C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.298C2^3 | 128,1709 |
C42.299C23 = C42.299C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.299C2^3 | 128,1710 |
C42.300C23 = C42.300C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.300C2^3 | 128,1712 |
C42.301C23 = C42.301C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.301C2^3 | 128,1713 |
C42.302C23 = C42.302C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.302C2^3 | 128,1715 |
C42.303C23 = Q8.4M4(2) | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.303C2^3 | 128,1716 |
C42.304C23 = C42.304C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.304C2^3 | 128,1718 |
C42.305C23 = C42.305C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.305C2^3 | 128,1719 |
C42.306C23 = D4⋊8M4(2) | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.306C2^3 | 128,1722 |
C42.307C23 = C42.307C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.307C2^3 | 128,1724 |
C42.308C23 = C42.308C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.308C2^3 | 128,1725 |
C42.309C23 = C42.309C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.309C2^3 | 128,1726 |
C42.310C23 = C42.310C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.310C2^3 | 128,1727 |
C42.311C23 = C2×D4.8D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.311C2^3 | 128,1748 |
C42.312C23 = C2×D4.10D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.312C2^3 | 128,1749 |
C42.313C23 = C42.313C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 16 | 4 | C4^2.313C2^3 | 128,1750 |
C42.314C23 = C2×C4⋊D8 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.314C2^3 | 128,1761 |
C42.315C23 = C2×D4.D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.315C2^3 | 128,1762 |
C42.316C23 = C2×D4.2D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.316C2^3 | 128,1763 |
C42.317C23 = C2×C4⋊SD16 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.317C2^3 | 128,1764 |
C42.318C23 = C2×C4⋊2Q16 | φ: C23/C2 → C22 ⊆ Aut C42 | 128 | | C4^2.318C2^3 | 128,1765 |
C42.319C23 = C2×Q8.D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.319C2^3 | 128,1766 |
C42.320C23 = C42.443D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.320C2^3 | 128,1767 |
C42.321C23 = C42.211D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.321C2^3 | 128,1768 |
C42.322C23 = C42.212D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.322C2^3 | 128,1769 |
C42.323C23 = C42.444D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.323C2^3 | 128,1770 |
C42.324C23 = C42.445D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.324C2^3 | 128,1771 |
C42.325C23 = C42.446D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.325C2^3 | 128,1772 |
C42.326C23 = C2×D4⋊Q8 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.326C2^3 | 128,1802 |
C42.327C23 = C2×D4⋊2Q8 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.327C2^3 | 128,1803 |
C42.328C23 = C2×D4.Q8 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.328C2^3 | 128,1804 |
C42.329C23 = C2×Q8⋊Q8 | φ: C23/C2 → C22 ⊆ Aut C42 | 128 | | C4^2.329C2^3 | 128,1805 |
C42.330C23 = C2×C4.Q16 | φ: C23/C2 → C22 ⊆ Aut C42 | 128 | | C4^2.330C2^3 | 128,1806 |
C42.331C23 = C2×Q8.Q8 | φ: C23/C2 → C22 ⊆ Aut C42 | 128 | | C4^2.331C2^3 | 128,1807 |
C42.332C23 = C42.447D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.332C2^3 | 128,1808 |
C42.333C23 = C42.219D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.333C2^3 | 128,1809 |
C42.334C23 = C42.220D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.334C2^3 | 128,1810 |
C42.335C23 = C42.448D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.335C2^3 | 128,1811 |
C42.336C23 = C42.449D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.336C2^3 | 128,1812 |
C42.337C23 = C42.221D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.337C2^3 | 128,1832 |
C42.338C23 = C42.222D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.338C2^3 | 128,1833 |
C42.339C23 = C42.223D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.339C2^3 | 128,1835 |
C42.340C23 = C42.224D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.340C2^3 | 128,1836 |
C42.341C23 = C42.450D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.341C2^3 | 128,1838 |
C42.342C23 = C42.451D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.342C2^3 | 128,1839 |
C42.343C23 = C42.227D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.343C2^3 | 128,1841 |
C42.344C23 = C42.228D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.344C2^3 | 128,1842 |
C42.345C23 = C42.229D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.345C2^3 | 128,1843 |
C42.346C23 = C42.230D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.346C2^3 | 128,1844 |
C42.347C23 = C42.231D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.347C2^3 | 128,1845 |
C42.348C23 = C42.232D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.348C2^3 | 128,1846 |
C42.349C23 = C42.233D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.349C2^3 | 128,1847 |
C42.350C23 = C42.234D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.350C2^3 | 128,1848 |
C42.351C23 = C42.235D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.351C2^3 | 128,1849 |
C42.352C23 = C42.352C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.352C2^3 | 128,1850 |
C42.353C23 = C42.353C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.353C2^3 | 128,1851 |
C42.354C23 = C42.354C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.354C2^3 | 128,1852 |
C42.355C23 = C42.355C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.355C2^3 | 128,1853 |
C42.356C23 = C42.356C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.356C2^3 | 128,1854 |
C42.357C23 = C42.357C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.357C2^3 | 128,1855 |
C42.358C23 = C42.358C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.358C2^3 | 128,1856 |
C42.359C23 = C42.359C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.359C2^3 | 128,1857 |
C42.360C23 = C42.360C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.360C2^3 | 128,1858 |
C42.361C23 = C42.361C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.361C2^3 | 128,1859 |
C42.362C23 = C2×C42.28C22 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.362C2^3 | 128,1864 |
C42.363C23 = C2×C42.29C22 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.363C2^3 | 128,1865 |
C42.364C23 = C2×C42.30C22 | φ: C23/C2 → C22 ⊆ Aut C42 | 128 | | C4^2.364C2^3 | 128,1866 |
C42.365C23 = C42.239D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.365C2^3 | 128,1867 |
C42.366C23 = C42.366C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.366C2^3 | 128,1868 |
C42.367C23 = C42.367C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.367C2^3 | 128,1869 |
C42.368C23 = C42.242D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.368C2^3 | 128,1872 |
C42.369C23 = C42.244D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.369C2^3 | 128,1874 |
C42.370C23 = C2×C8⋊3D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.370C2^3 | 128,1880 |
C42.371C23 = C2×C8.2D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.371C2^3 | 128,1881 |
C42.372C23 = C42.247D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.372C2^3 | 128,1882 |
C42.373C23 = M4(2)⋊7D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.373C2^3 | 128,1883 |
C42.374C23 = M4(2)⋊8D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.374C2^3 | 128,1884 |
C42.375C23 = M4(2)⋊9D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.375C2^3 | 128,1885 |
C42.376C23 = M4(2)⋊10D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.376C2^3 | 128,1886 |
C42.377C23 = M4(2)⋊11D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.377C2^3 | 128,1887 |
C42.378C23 = M4(2).20D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.378C2^3 | 128,1888 |
C42.379C23 = C2×C8⋊Q8 | φ: C23/C2 → C22 ⊆ Aut C42 | 128 | | C4^2.379C2^3 | 128,1893 |
C42.380C23 = C42.252D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.380C2^3 | 128,1894 |
C42.381C23 = M4(2)⋊3Q8 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.381C2^3 | 128,1895 |
C42.382C23 = M4(2)⋊4Q8 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.382C2^3 | 128,1896 |
C42.383C23 = C42.255D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.383C2^3 | 128,1903 |
C42.384C23 = C42.256D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.384C2^3 | 128,1904 |
C42.385C23 = C42.385C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.385C2^3 | 128,1905 |
C42.386C23 = C42.386C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.386C2^3 | 128,1906 |
C42.387C23 = C42.387C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.387C2^3 | 128,1907 |
C42.388C23 = C42.388C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.388C2^3 | 128,1908 |
C42.389C23 = C42.389C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.389C2^3 | 128,1909 |
C42.390C23 = C42.390C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.390C2^3 | 128,1910 |
C42.391C23 = C42.391C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.391C2^3 | 128,1911 |
C42.392C23 = C42.257D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.392C2^3 | 128,1912 |
C42.393C23 = C42.258D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.393C2^3 | 128,1913 |
C42.394C23 = C42.260D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.394C2^3 | 128,1915 |
C42.395C23 = C42.263D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.395C2^3 | 128,1937 |
C42.396C23 = C42.264D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.396C2^3 | 128,1938 |
C42.397C23 = C42.266D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.397C2^3 | 128,1940 |
C42.398C23 = C42.267D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.398C2^3 | 128,1941 |
C42.399C23 = C42.271D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.399C2^3 | 128,1945 |
C42.400C23 = C42.272D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.400C2^3 | 128,1946 |
C42.401C23 = C42.273D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.401C2^3 | 128,1947 |
C42.402C23 = C42.274D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.402C2^3 | 128,1948 |
C42.403C23 = C42.275D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.403C2^3 | 128,1949 |
C42.404C23 = C42.276D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.404C2^3 | 128,1950 |
C42.405C23 = C42.277D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.405C2^3 | 128,1951 |
C42.406C23 = C42.406C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.406C2^3 | 128,1952 |
C42.407C23 = C42.407C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.407C2^3 | 128,1953 |
C42.408C23 = C42.408C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.408C2^3 | 128,1954 |
C42.409C23 = C42.409C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.409C2^3 | 128,1955 |
C42.410C23 = C42.410C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.410C2^3 | 128,1956 |
C42.411C23 = C42.411C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.411C2^3 | 128,1957 |
C42.412C23 = C42.278D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.412C2^3 | 128,1958 |
C42.413C23 = C42.279D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.413C2^3 | 128,1959 |
C42.414C23 = C42.281D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.414C2^3 | 128,1961 |
C42.415C23 = C42.282D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.415C2^3 | 128,1962 |
C42.416C23 = C42.286D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.416C2^3 | 128,1966 |
C42.417C23 = C42.287D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.417C2^3 | 128,1967 |
C42.418C23 = C42.288D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.418C2^3 | 128,1968 |
C42.419C23 = C42.289D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.419C2^3 | 128,1969 |
C42.420C23 = C42.290D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.420C2^3 | 128,1970 |
C42.421C23 = C42.291D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.421C2^3 | 128,1971 |
C42.422C23 = C42.292D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.422C2^3 | 128,1972 |
C42.423C23 = C42.423C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.423C2^3 | 128,1973 |
C42.424C23 = C42.424C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.424C2^3 | 128,1974 |
C42.425C23 = C42.425C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.425C2^3 | 128,1975 |
C42.426C23 = C42.426C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.426C2^3 | 128,1976 |
C42.427C23 = C42.293D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.427C2^3 | 128,1977 |
C42.428C23 = C42.294D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.428C2^3 | 128,1978 |
C42.429C23 = C42.295D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.429C2^3 | 128,1979 |
C42.430C23 = C42.296D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.430C2^3 | 128,1980 |
C42.431C23 = C42.297D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.431C2^3 | 128,1981 |
C42.432C23 = C42.298D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.432C2^3 | 128,1982 |
C42.433C23 = C42.299D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.433C2^3 | 128,1983 |
C42.434C23 = C42.300D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.434C2^3 | 128,1984 |
C42.435C23 = C42.301D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.435C2^3 | 128,1985 |
C42.436C23 = C42.302D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.436C2^3 | 128,1986 |
C42.437C23 = C42.303D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.437C2^3 | 128,1987 |
C42.438C23 = C42.304D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.438C2^3 | 128,1988 |
C42.439C23 = D8⋊4D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.439C2^3 | 128,2004 |
C42.440C23 = D8⋊5D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.440C2^3 | 128,2005 |
C42.441C23 = SD16⋊1D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.441C2^3 | 128,2006 |
C42.442C23 = SD16⋊2D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.442C2^3 | 128,2007 |
C42.443C23 = SD16⋊3D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.443C2^3 | 128,2008 |
C42.444C23 = Q16⋊4D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.444C2^3 | 128,2009 |
C42.445C23 = Q16⋊5D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.445C2^3 | 128,2010 |
C42.446C23 = D4×D8 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.446C2^3 | 128,2011 |
C42.447C23 = D8⋊12D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.447C2^3 | 128,2012 |
C42.448C23 = D4×SD16 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.448C2^3 | 128,2013 |
C42.449C23 = SD16⋊10D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.449C2^3 | 128,2014 |
C42.450C23 = D8⋊13D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.450C2^3 | 128,2015 |
C42.451C23 = SD16⋊11D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.451C2^3 | 128,2016 |
C42.452C23 = Q16⋊12D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.452C2^3 | 128,2017 |
C42.453C23 = D4×Q16 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.453C2^3 | 128,2018 |
C42.454C23 = Q16⋊13D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.454C2^3 | 128,2019 |
C42.455C23 = D8○SD16 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | 4 | C4^2.455C2^3 | 128,2022 |
C42.456C23 = D8⋊6D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 16 | 4 | C4^2.456C2^3 | 128,2023 |
C42.457C23 = D8○D8 | φ: C23/C2 → C22 ⊆ Aut C42 | 16 | 4+ | C4^2.457C2^3 | 128,2024 |
C42.458C23 = D8○Q16 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | 4- | C4^2.458C2^3 | 128,2025 |
C42.459C23 = D4⋊4D8 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.459C2^3 | 128,2026 |
C42.460C23 = D4⋊7SD16 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.460C2^3 | 128,2027 |
C42.461C23 = C42.461C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.461C2^3 | 128,2028 |
C42.462C23 = C42.462C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.462C2^3 | 128,2029 |
C42.463C23 = D4⋊8SD16 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.463C2^3 | 128,2030 |
C42.464C23 = D4⋊5Q16 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.464C2^3 | 128,2031 |
C42.465C23 = C42.465C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.465C2^3 | 128,2032 |
C42.466C23 = C42.466C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.466C2^3 | 128,2033 |
C42.467C23 = C42.467C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.467C2^3 | 128,2034 |
C42.468C23 = C42.468C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.468C2^3 | 128,2035 |
C42.469C23 = C42.469C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.469C2^3 | 128,2036 |
C42.470C23 = C42.470C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.470C2^3 | 128,2037 |
C42.471C23 = C42.471C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.471C2^3 | 128,2054 |
C42.472C23 = C42.472C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.472C2^3 | 128,2055 |
C42.473C23 = C42.473C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.473C2^3 | 128,2056 |
C42.474C23 = C42.474C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.474C2^3 | 128,2057 |
C42.475C23 = C42.475C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.475C2^3 | 128,2058 |
C42.476C23 = C42.476C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.476C2^3 | 128,2059 |
C42.477C23 = C42.477C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.477C2^3 | 128,2060 |
C42.478C23 = C42.478C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.478C2^3 | 128,2061 |
C42.479C23 = C42.479C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.479C2^3 | 128,2062 |
C42.480C23 = C42.480C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.480C2^3 | 128,2063 |
C42.481C23 = C42.481C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.481C2^3 | 128,2064 |
C42.482C23 = C42.482C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.482C2^3 | 128,2065 |
C42.483C23 = D4⋊5D8 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.483C2^3 | 128,2066 |
C42.484C23 = D4⋊9SD16 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.484C2^3 | 128,2067 |
C42.485C23 = C42.485C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.485C2^3 | 128,2068 |
C42.486C23 = C42.486C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.486C2^3 | 128,2069 |
C42.487C23 = D4⋊6Q16 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.487C2^3 | 128,2070 |
C42.488C23 = C42.488C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.488C2^3 | 128,2071 |
C42.489C23 = C42.489C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.489C2^3 | 128,2072 |
C42.490C23 = C42.490C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.490C2^3 | 128,2073 |
C42.491C23 = C42.491C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.491C2^3 | 128,2074 |
C42.492C23 = C42.492C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.492C2^3 | 128,2083 |
C42.493C23 = C42.493C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.493C2^3 | 128,2084 |
C42.494C23 = C42.494C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.494C2^3 | 128,2085 |
C42.495C23 = C42.495C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.495C2^3 | 128,2086 |
C42.496C23 = C42.496C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.496C2^3 | 128,2087 |
C42.497C23 = C42.497C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.497C2^3 | 128,2088 |
C42.498C23 = C42.498C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.498C2^3 | 128,2089 |
C42.499C23 = Q8⋊4D8 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.499C2^3 | 128,2090 |
C42.500C23 = Q8⋊7SD16 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.500C2^3 | 128,2091 |
C42.501C23 = C42.501C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.501C2^3 | 128,2092 |
C42.502C23 = C42.502C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.502C2^3 | 128,2093 |
C42.503C23 = Q8⋊8SD16 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.503C2^3 | 128,2094 |
C42.504C23 = Q8⋊5Q16 | φ: C23/C2 → C22 ⊆ Aut C42 | 128 | | C4^2.504C2^3 | 128,2095 |
C42.505C23 = C42.505C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.505C2^3 | 128,2096 |
C42.506C23 = C42.506C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.506C2^3 | 128,2097 |
C42.507C23 = C42.507C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.507C2^3 | 128,2098 |
C42.508C23 = C42.508C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.508C2^3 | 128,2099 |
C42.509C23 = C42.509C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.509C2^3 | 128,2100 |
C42.510C23 = C42.510C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.510C2^3 | 128,2101 |
C42.511C23 = C42.511C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.511C2^3 | 128,2102 |
C42.512C23 = C42.512C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.512C2^3 | 128,2103 |
C42.513C23 = C42.513C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.513C2^3 | 128,2104 |
C42.514C23 = C42.514C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.514C2^3 | 128,2105 |
C42.515C23 = C42.515C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 128 | | C4^2.515C2^3 | 128,2106 |
C42.516C23 = C42.516C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.516C2^3 | 128,2107 |
C42.517C23 = C42.517C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.517C2^3 | 128,2108 |
C42.518C23 = C42.518C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.518C2^3 | 128,2109 |
C42.519C23 = Q8×D8 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.519C2^3 | 128,2110 |
C42.520C23 = Q8×SD16 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.520C2^3 | 128,2111 |
C42.521C23 = D8⋊6Q8 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.521C2^3 | 128,2112 |
C42.522C23 = SD16⋊4Q8 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.522C2^3 | 128,2113 |
C42.523C23 = Q8×Q16 | φ: C23/C2 → C22 ⊆ Aut C42 | 128 | | C4^2.523C2^3 | 128,2114 |
C42.524C23 = Q16⋊6Q8 | φ: C23/C2 → C22 ⊆ Aut C42 | 128 | | C4^2.524C2^3 | 128,2115 |
C42.525C23 = Q8⋊5D8 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.525C2^3 | 128,2123 |
C42.526C23 = Q8⋊9SD16 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.526C2^3 | 128,2124 |
C42.527C23 = C42.527C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.527C2^3 | 128,2125 |
C42.528C23 = C42.528C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.528C2^3 | 128,2126 |
C42.529C23 = Q8⋊6Q16 | φ: C23/C2 → C22 ⊆ Aut C42 | 128 | | C4^2.529C2^3 | 128,2127 |
C42.530C23 = C42.530C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.530C2^3 | 128,2128 |
C42.531C23 = C42.531C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.531C2^3 | 128,2133 |
C42.532C23 = C42.532C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.532C2^3 | 128,2134 |
C42.533C23 = C42.533C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.533C2^3 | 128,2135 |
C42.534C23 = C2×C23.32C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.534C2^3 | 128,2158 |
C42.535C23 = C2×C23.33C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.535C2^3 | 128,2159 |
C42.536C23 = C4×2+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.536C2^3 | 128,2161 |
C42.537C23 = C4×2- 1+4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.537C2^3 | 128,2162 |
C42.538C23 = C2×C23.37C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.538C2^3 | 128,2175 |
C42.539C23 = C22.33C25 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.539C2^3 | 128,2176 |
C42.540C23 = C2×C23.38C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.540C2^3 | 128,2179 |
C42.541C23 = C22.38C25 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.541C2^3 | 128,2181 |
C42.542C23 = C2×C22.33C24 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.542C2^3 | 128,2183 |
C42.543C23 = C2×C22.34C24 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.543C2^3 | 128,2184 |
C42.544C23 = C2×C22.35C24 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.544C2^3 | 128,2185 |
C42.545C23 = C2×C22.36C24 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.545C2^3 | 128,2186 |
C42.546C23 = C22.44C25 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.546C2^3 | 128,2187 |
C42.547C23 = C2×C23.41C23 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.547C2^3 | 128,2189 |
C42.548C23 = C22.47C25 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.548C2^3 | 128,2190 |
C42.549C23 = C22.48C25 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.549C2^3 | 128,2191 |
C42.550C23 = C22.49C25 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.550C2^3 | 128,2192 |
C42.551C23 = C22.50C25 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.551C2^3 | 128,2193 |
C42.552C23 = C2×D4⋊6D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.552C2^3 | 128,2196 |
C42.553C23 = C2×Q8⋊5D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.553C2^3 | 128,2197 |
C42.554C23 = C2×D4×Q8 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.554C2^3 | 128,2198 |
C42.555C23 = C2×Q8⋊6D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.555C2^3 | 128,2199 |
C42.556C23 = D4×C4○D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.556C2^3 | 128,2200 |
C42.557C23 = C2×C22.46C24 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.557C2^3 | 128,2202 |
C42.558C23 = C2×C22.47C24 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.558C2^3 | 128,2203 |
C42.559C23 = C2×D4⋊3Q8 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.559C2^3 | 128,2204 |
C42.560C23 = C2×C22.49C24 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.560C2^3 | 128,2205 |
C42.561C23 = C2×C22.50C24 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.561C2^3 | 128,2206 |
C42.562C23 = C2×Q8⋊3Q8 | φ: C23/C2 → C22 ⊆ Aut C42 | 128 | | C4^2.562C2^3 | 128,2208 |
C42.563C23 = C2×Q82 | φ: C23/C2 → C22 ⊆ Aut C42 | 128 | | C4^2.563C2^3 | 128,2209 |
C42.564C23 = Q8×C4○D4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.564C2^3 | 128,2210 |
C42.565C23 = C2×C22.53C24 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.565C2^3 | 128,2211 |
C42.566C23 = C22.69C25 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.566C2^3 | 128,2212 |
C42.567C23 = C22.70C25 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.567C2^3 | 128,2213 |
C42.568C23 = C22.71C25 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.568C2^3 | 128,2214 |
C42.569C23 = C22.72C25 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.569C2^3 | 128,2215 |
C42.570C23 = C22.80C25 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.570C2^3 | 128,2223 |
C42.571C23 = C22.82C25 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.571C2^3 | 128,2225 |
C42.572C23 = C22.83C25 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.572C2^3 | 128,2226 |
C42.573C23 = C4⋊2+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.573C2^3 | 128,2228 |
C42.574C23 = C4⋊2- 1+4 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.574C2^3 | 128,2229 |
C42.575C23 = C22.87C25 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.575C2^3 | 128,2230 |
C42.576C23 = C22.88C25 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.576C2^3 | 128,2231 |
C42.577C23 = C22.89C25 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.577C2^3 | 128,2232 |
C42.578C23 = C22.90C25 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.578C2^3 | 128,2233 |
C42.579C23 = C22.101C25 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.579C2^3 | 128,2244 |
C42.580C23 = C2×C22.56C24 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.580C2^3 | 128,2259 |
C42.581C23 = C2×C22.57C24 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.581C2^3 | 128,2260 |
C42.582C23 = C22.118C25 | φ: C23/C2 → C22 ⊆ Aut C42 | 32 | | C4^2.582C2^3 | 128,2261 |
C42.583C23 = C2×C22.58C24 | φ: C23/C2 → C22 ⊆ Aut C42 | 128 | | C4^2.583C2^3 | 128,2262 |
C42.584C23 = C22.120C25 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.584C2^3 | 128,2263 |
C42.585C23 = C22.148C25 | φ: C23/C2 → C22 ⊆ Aut C42 | 64 | | C4^2.585C2^3 | 128,2291 |
C42.586C23 = C22×C8⋊C4 | φ: C23/C22 → C2 ⊆ Aut C42 | 128 | | C4^2.586C2^3 | 128,1602 |
C42.587C23 = C2×C8○2M4(2) | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.587C2^3 | 128,1604 |
C42.588C23 = M4(2)○2M4(2) | φ: C23/C22 → C2 ⊆ Aut C42 | 32 | | C4^2.588C2^3 | 128,1605 |
C42.589C23 = C4×C8○D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.589C2^3 | 128,1606 |
C42.590C23 = D4.5C42 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.590C2^3 | 128,1607 |
C42.591C23 = Q8⋊6M4(2) | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.591C2^3 | 128,1703 |
C42.592C23 = C22.14C25 | φ: C23/C22 → C2 ⊆ Aut C42 | 32 | | C4^2.592C2^3 | 128,2160 |
C42.593C23 = C2×C23.36C23 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.593C2^3 | 128,2171 |
C42.594C23 = C22.64C25 | φ: C23/C22 → C2 ⊆ Aut C42 | 32 | | C4^2.594C2^3 | 128,2207 |
C42.595C23 = C2×D4⋊C8 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.595C2^3 | 128,206 |
C42.596C23 = C2×Q8⋊C8 | φ: C23/C22 → C2 ⊆ Aut C42 | 128 | | C4^2.596C2^3 | 128,207 |
C42.597C23 = C42.455D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.597C2^3 | 128,208 |
C42.598C23 = C42.397D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.598C2^3 | 128,209 |
C42.599C23 = C42.398D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 32 | | C4^2.599C2^3 | 128,210 |
C42.600C23 = C42.399D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.600C2^3 | 128,211 |
C42.601C23 = C42.45D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.601C2^3 | 128,212 |
C42.602C23 = C42.46D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.602C2^3 | 128,213 |
C42.603C23 = C42.373D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.603C2^3 | 128,214 |
C42.604C23 = C42.47D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.604C2^3 | 128,215 |
C42.605C23 = C42.400D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.605C2^3 | 128,216 |
C42.606C23 = C42.401D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.606C2^3 | 128,217 |
C42.607C23 = D4⋊M4(2) | φ: C23/C22 → C2 ⊆ Aut C42 | 32 | | C4^2.607C2^3 | 128,218 |
C42.608C23 = Q8⋊M4(2) | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.608C2^3 | 128,219 |
C42.609C23 = C42.374D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.609C2^3 | 128,220 |
C42.610C23 = D4⋊4M4(2) | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.610C2^3 | 128,221 |
C42.611C23 = D4⋊5M4(2) | φ: C23/C22 → C2 ⊆ Aut C42 | 32 | | C4^2.611C2^3 | 128,222 |
C42.612C23 = Q8⋊5M4(2) | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.612C2^3 | 128,223 |
C42.613C23 = C42.315D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.613C2^3 | 128,224 |
C42.614C23 = C42.316D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.614C2^3 | 128,225 |
C42.615C23 = C42.305D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.615C2^3 | 128,226 |
C42.616C23 = C42.52D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.616C2^3 | 128,227 |
C42.617C23 = C42.53D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.617C2^3 | 128,228 |
C42.618C23 = C42.54D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.618C2^3 | 128,229 |
C42.619C23 = C2×C8⋊2C8 | φ: C23/C22 → C2 ⊆ Aut C42 | 128 | | C4^2.619C2^3 | 128,294 |
C42.620C23 = C2×C8⋊1C8 | φ: C23/C22 → C2 ⊆ Aut C42 | 128 | | C4^2.620C2^3 | 128,295 |
C42.621C23 = C42.42Q8 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.621C2^3 | 128,296 |
C42.622C23 = M4(2)⋊1C8 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.622C2^3 | 128,297 |
C42.623C23 = C8⋊8M4(2) | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.623C2^3 | 128,298 |
C42.624C23 = C8⋊7M4(2) | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.624C2^3 | 128,299 |
C42.625C23 = C42.43Q8 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.625C2^3 | 128,300 |
C42.626C23 = C8⋊1M4(2) | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.626C2^3 | 128,301 |
C42.627C23 = C42.90D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.627C2^3 | 128,302 |
C42.628C23 = C42.91D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.628C2^3 | 128,303 |
C42.629C23 = C42.Q8 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.629C2^3 | 128,304 |
C42.630C23 = C42.92D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.630C2^3 | 128,305 |
C42.631C23 = C42.21Q8 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.631C2^3 | 128,306 |
C42.632C23 = C8×D8 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.632C2^3 | 128,307 |
C42.633C23 = C8×SD16 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.633C2^3 | 128,308 |
C42.634C23 = C8×Q16 | φ: C23/C22 → C2 ⊆ Aut C42 | 128 | | C4^2.634C2^3 | 128,309 |
C42.635C23 = SD16⋊C8 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.635C2^3 | 128,310 |
C42.636C23 = Q16⋊5C8 | φ: C23/C22 → C2 ⊆ Aut C42 | 128 | | C4^2.636C2^3 | 128,311 |
C42.637C23 = D8⋊5C8 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.637C2^3 | 128,312 |
C42.638C23 = C8⋊9D8 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.638C2^3 | 128,313 |
C42.639C23 = C8⋊12SD16 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.639C2^3 | 128,314 |
C42.640C23 = C8⋊15SD16 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.640C2^3 | 128,315 |
C42.641C23 = C8⋊9Q16 | φ: C23/C22 → C2 ⊆ Aut C42 | 128 | | C4^2.641C2^3 | 128,316 |
C42.642C23 = D4.M4(2) | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.642C2^3 | 128,317 |
C42.643C23 = D4⋊2M4(2) | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.643C2^3 | 128,318 |
C42.644C23 = Q8.M4(2) | φ: C23/C22 → C2 ⊆ Aut C42 | 128 | | C4^2.644C2^3 | 128,319 |
C42.645C23 = Q8⋊2M4(2) | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.645C2^3 | 128,320 |
C42.646C23 = C8⋊6D8 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.646C2^3 | 128,321 |
C42.647C23 = C8⋊9SD16 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.647C2^3 | 128,322 |
C42.648C23 = C8⋊6Q16 | φ: C23/C22 → C2 ⊆ Aut C42 | 128 | | C4^2.648C2^3 | 128,323 |
C42.649C23 = C8⋊M4(2) | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.649C2^3 | 128,324 |
C42.650C23 = C8.M4(2) | φ: C23/C22 → C2 ⊆ Aut C42 | 128 | | C4^2.650C2^3 | 128,325 |
C42.651C23 = C8⋊3M4(2) | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.651C2^3 | 128,326 |
C42.652C23 = C8⋊8SD16 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.652C2^3 | 128,437 |
C42.653C23 = C8⋊5D8 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.653C2^3 | 128,438 |
C42.654C23 = C8⋊5Q16 | φ: C23/C22 → C2 ⊆ Aut C42 | 128 | | C4^2.654C2^3 | 128,439 |
C42.655C23 = C82⋊12C2 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.655C2^3 | 128,440 |
C42.656C23 = C82⋊5C2 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.656C2^3 | 128,441 |
C42.657C23 = C8.7Q16 | φ: C23/C22 → C2 ⊆ Aut C42 | 128 | | C4^2.657C2^3 | 128,442 |
C42.658C23 = C82⋊3C2 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.658C2^3 | 128,443 |
C42.659C23 = C8⋊4D8 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.659C2^3 | 128,444 |
C42.660C23 = C8⋊4Q16 | φ: C23/C22 → C2 ⊆ Aut C42 | 128 | | C4^2.660C2^3 | 128,445 |
C42.661C23 = C8⋊5SD16 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.661C2^3 | 128,446 |
C42.662C23 = C8⋊6SD16 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.662C2^3 | 128,447 |
C42.663C23 = C8.9SD16 | φ: C23/C22 → C2 ⊆ Aut C42 | 128 | | C4^2.663C2^3 | 128,448 |
C42.664C23 = C42.664C23 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.664C2^3 | 128,449 |
C42.665C23 = C42.665C23 | φ: C23/C22 → C2 ⊆ Aut C42 | 128 | | C4^2.665C2^3 | 128,450 |
C42.666C23 = C42.666C23 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.666C2^3 | 128,451 |
C42.667C23 = C42.667C23 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.667C2^3 | 128,452 |
C42.668C23 = C8⋊3D8 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.668C2^3 | 128,453 |
C42.669C23 = C8.2D8 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.669C2^3 | 128,454 |
C42.670C23 = C8⋊3Q16 | φ: C23/C22 → C2 ⊆ Aut C42 | 128 | | C4^2.670C2^3 | 128,455 |
C42.671C23 = 2- 1+4⋊5C4 | φ: C23/C22 → C2 ⊆ Aut C42 | 16 | 4 | C4^2.671C2^3 | 128,1633 |
C42.672C23 = C22×C4⋊C8 | φ: C23/C22 → C2 ⊆ Aut C42 | 128 | | C4^2.672C2^3 | 128,1634 |
C42.673C23 = C2×C4⋊M4(2) | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.673C2^3 | 128,1635 |
C42.674C23 = C42.674C23 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.674C2^3 | 128,1638 |
C42.675C23 = C2×C42.12C4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.675C2^3 | 128,1649 |
C42.676C23 = C2×C42.6C4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.676C2^3 | 128,1650 |
C42.677C23 = C42.677C23 | φ: C23/C22 → C2 ⊆ Aut C42 | 32 | | C4^2.677C2^3 | 128,1652 |
C42.678C23 = C42.678C23 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.678C2^3 | 128,1657 |
C42.679C23 = D4×C2×C8 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.679C2^3 | 128,1658 |
C42.680C23 = C2×C8⋊6D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.680C2^3 | 128,1660 |
C42.681C23 = C42.681C23 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.681C2^3 | 128,1663 |
C42.682C23 = M4(2)⋊23D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.682C2^3 | 128,1667 |
C42.683C23 = C2×C4×D8 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.683C2^3 | 128,1668 |
C42.684C23 = C2×C4×SD16 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.684C2^3 | 128,1669 |
C42.685C23 = C2×C4×Q16 | φ: C23/C22 → C2 ⊆ Aut C42 | 128 | | C4^2.685C2^3 | 128,1670 |
C42.686C23 = C4×C4○D8 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.686C2^3 | 128,1671 |
C42.687C23 = C2×C8○D8 | φ: C23/C22 → C2 ⊆ Aut C42 | 32 | | C4^2.687C2^3 | 128,1685 |
C42.688C23 = Q8×C2×C8 | φ: C23/C22 → C2 ⊆ Aut C42 | 128 | | C4^2.688C2^3 | 128,1690 |
C42.689C23 = C2×C8⋊4Q8 | φ: C23/C22 → C2 ⊆ Aut C42 | 128 | | C4^2.689C2^3 | 128,1691 |
C42.690C23 = C8×C4○D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.690C2^3 | 128,1696 |
C42.691C23 = C42.691C23 | φ: C23/C22 → C2 ⊆ Aut C42 | 32 | | C4^2.691C2^3 | 128,1704 |
C42.692C23 = D4⋊7M4(2) | φ: C23/C22 → C2 ⊆ Aut C42 | 32 | | C4^2.692C2^3 | 128,1706 |
C42.693C23 = C42.693C23 | φ: C23/C22 → C2 ⊆ Aut C42 | 32 | | C4^2.693C2^3 | 128,1707 |
C42.694C23 = C42.694C23 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.694C2^3 | 128,1711 |
C42.695C23 = C42.695C23 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.695C2^3 | 128,1714 |
C42.696C23 = C42.696C23 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.696C2^3 | 128,1717 |
C42.697C23 = C42.697C23 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.697C2^3 | 128,1720 |
C42.698C23 = C42.698C23 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.698C2^3 | 128,1721 |
C42.699C23 = Q8⋊7M4(2) | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.699C2^3 | 128,1723 |
C42.700C23 = C42.384D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.700C2^3 | 128,1834 |
C42.701C23 = C42.225D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 32 | | C4^2.701C2^3 | 128,1837 |
C42.702C23 = C42.226D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.702C2^3 | 128,1840 |
C42.703C23 = C2×C4.4D8 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.703C2^3 | 128,1860 |
C42.704C23 = C2×C4.SD16 | φ: C23/C22 → C2 ⊆ Aut C42 | 128 | | C4^2.704C2^3 | 128,1861 |
C42.705C23 = C2×C42.78C22 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.705C2^3 | 128,1862 |
C42.706C23 = C42.355D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.706C2^3 | 128,1863 |
C42.707C23 = C42.240D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 32 | | C4^2.707C2^3 | 128,1870 |
C42.708C23 = C42.241D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.708C2^3 | 128,1871 |
C42.709C23 = C42.243D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.709C2^3 | 128,1873 |
C42.710C23 = C2×C8⋊5D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.710C2^3 | 128,1875 |
C42.711C23 = C2×C8⋊4D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.711C2^3 | 128,1876 |
C42.712C23 = C2×C4⋊Q16 | φ: C23/C22 → C2 ⊆ Aut C42 | 128 | | C4^2.712C2^3 | 128,1877 |
C42.713C23 = C2×C8.12D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.713C2^3 | 128,1878 |
C42.714C23 = C42.360D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.714C2^3 | 128,1879 |
C42.715C23 = C2×C8⋊3Q8 | φ: C23/C22 → C2 ⊆ Aut C42 | 128 | | C4^2.715C2^3 | 128,1889 |
C42.716C23 = C2×C8.5Q8 | φ: C23/C22 → C2 ⊆ Aut C42 | 128 | | C4^2.716C2^3 | 128,1890 |
C42.717C23 = C2×C8⋊2Q8 | φ: C23/C22 → C2 ⊆ Aut C42 | 128 | | C4^2.717C2^3 | 128,1891 |
C42.718C23 = C42.364D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.718C2^3 | 128,1892 |
C42.719C23 = M4(2)⋊5Q8 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.719C2^3 | 128,1897 |
C42.720C23 = M4(2)⋊6Q8 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.720C2^3 | 128,1898 |
C42.721C23 = C42.365D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.721C2^3 | 128,1899 |
C42.722C23 = C42.308D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.722C2^3 | 128,1900 |
C42.723C23 = C42.366D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.723C2^3 | 128,1901 |
C42.724C23 = C42.367D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.724C2^3 | 128,1902 |
C42.725C23 = C42.259D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.725C2^3 | 128,1914 |
C42.726C23 = C42.261D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.726C2^3 | 128,1916 |
C42.727C23 = C42.262D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.727C2^3 | 128,1917 |
C42.728C23 = C42.265D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.728C2^3 | 128,1939 |
C42.729C23 = C42.268D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.729C2^3 | 128,1942 |
C42.730C23 = C42.269D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 32 | | C4^2.730C2^3 | 128,1943 |
C42.731C23 = C42.270D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.731C2^3 | 128,1944 |
C42.732C23 = C42.280D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.732C2^3 | 128,1960 |
C42.733C23 = C42.283D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.733C2^3 | 128,1963 |
C42.734C23 = C42.284D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.734C2^3 | 128,1964 |
C42.735C23 = C42.285D4 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.735C2^3 | 128,1965 |
C42.736C23 = Q8×C22×C4 | φ: C23/C22 → C2 ⊆ Aut C42 | 128 | | C4^2.736C2^3 | 128,2155 |
C42.737C23 = C22×C42.C2 | φ: C23/C22 → C2 ⊆ Aut C42 | 128 | | C4^2.737C2^3 | 128,2169 |
C42.738C23 = C22×C4⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C42 | 128 | | C4^2.738C2^3 | 128,2173 |
C42.739C23 = C2×C22.26C24 | φ: C23/C22 → C2 ⊆ Aut C42 | 64 | | C4^2.739C2^3 | 128,2174 |
C42.740C23 = C2×C8⋊C8 | central extension (φ=1) | 128 | | C4^2.740C2^3 | 128,180 |
C42.741C23 = C8×M4(2) | central extension (φ=1) | 64 | | C4^2.741C2^3 | 128,181 |
C42.742C23 = C82⋊C2 | central extension (φ=1) | 64 | | C4^2.742C2^3 | 128,182 |
C42.743C23 = C8⋊9M4(2) | central extension (φ=1) | 64 | | C4^2.743C2^3 | 128,183 |
C42.744C23 = C23.27C42 | central extension (φ=1) | 64 | | C4^2.744C2^3 | 128,184 |
C42.745C23 = C82⋊15C2 | central extension (φ=1) | 64 | | C4^2.745C2^3 | 128,185 |
C42.746C23 = C82⋊2C2 | central extension (φ=1) | 64 | | C4^2.746C2^3 | 128,186 |
C42.747C23 = C8⋊6M4(2) | central extension (φ=1) | 64 | | C4^2.747C2^3 | 128,187 |
C42.748C23 = C2×C4×M4(2) | central extension (φ=1) | 64 | | C4^2.748C2^3 | 128,1603 |
C42.749C23 = C2×C4×C4○D4 | central extension (φ=1) | 64 | | C4^2.749C2^3 | 128,2156 |